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SUMMARY Ferroelectric non-volatile memory (FeRAM)
has been inspiring interests since bismuth layer perovskite
material family was found to provide “Fatigue Free” endurance,
superior retention and imprint characteristics. In this paper, we
will provide new circuits technology for FeRAM developed to
implement high speed operation, low voltage operation and low
power consumption. Performance of LSI embedded with
FeRAM for contactless IC card is also provided to demonstrate
the feasibility of the circuit technology.
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1. Introduction

Ferroelectric non-volatile memory (FeRAM) have
excellent characteristics in terms of low power con-
sumption and high speed write which have not been
achieved with conventional non-volatile memory tech-
nology such as EEPROM. Table 1 shows a compari-
son between FeRAM and other type of memories. It is
noted that FeRAM has the capabilities of high opera-
tion speed in the range of DRAM and the small cell
size which is almost the same as DRAM if the same
process rule is applied to the design. Furthermore, the
endurance cycle of FeERAM is counted up to 10* cycles
and is expected to reach 10" cycles in the future. As
for the cell size, FLASH EEPROM gives the smallest
cell for 1T memory cell (I transistor per bit) structure.
However, an FeRAM with 1T memory cell structure is
demonstrated recently by using ferroelectric material
on the gate oxide of pass transistor [1]. This indicates
that FeRAM has a feasibility of mass storage memory
as well as non-volatile RAM. In other words, FeRAM
is expected to open a new era of semiconductor mem-
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ory.

The above features of FeRAM are derived from
utilizing unique characteristics of ferroelectric mate-
rial. Perovskite crystal structure in Fig. 1 is the sim-
plest crystal structure which exhibits ferroelectricity.
The spontaneous polarization of ferroelectric materials
is caused by a displacement of the cation, A and B
against the anion, oxygen in this case. As the direction
of the polarization is altered by applied electric field,
FeRAM using ferroelectric memory cell capacitor can
write logic state of “1” and “0” by changing the
direction of applied voltage. The electric field required
for the displacement is usually around 100kV/cm

-which is equivalent to only 2 V with a film thickness of

100 nm, and the polarization reversal, writing of
FeRAM, is easily performed within 100ns. This
physical mechanism is the origin of the superior fea-
tures of FeRAM. On the other hand, EEPROM writes
logic states by changing threshold voltage of memory
cell MOS transistor. An electron injection into the
floating gate of the MOS transistor through very thin
silicon dioxide gate film is needed to shift the threshold
voltage. This requires high voltage (12 V) and long

Table 1 The comparison FeRAMs with other memories.

FeRAM FLASH SRAM DRAM
'Write Voltage(V) 3V 12V 3V 3V
Write Cycle( s) 100n 101 10n 60n
Endurance >1013 108 no limit no limit
Cell size 1 0.8 4 1

Polarization

O O .

Aatom  Oxygen B atom

Fig. 1 Perovskite structure.
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write cycle time (>10 us).

Even with the substantial advantages of FeRAM
over the conventional EEPROM, a successful commer-
cialization of FeRAM relies upon further development
of circuit design and device architecture. This paper
discusses the circuit technology that is devised for
FeRAM to achieve the above purpose. Performance of
an FeRAM embedded LSI for contactless IC card
developed by incorporating our design scheme is also
given to demonstrate the feasibility of FeRAM based
device.

2. FeRAM Circuit Operation

The operation of conventional circuit is described
below. There are two types of memory cell, one is 2T/
2C type (2 transistors and 2 capacitors) and the other
is 1T/1C type (1 transistor and 1 capacitor).

The 2T/2C type memory cell and a read scheme of
FeRAM with 2T/2C cell are shown in Fig.2 and Fig.
3. When the word line (WL) and the CP of the
selected cell are driven to H (V. voltage) during a
read operation, electric charge of a cell comes out to
bit lines (BL and /BL). The difference in voltage
between BL and /BL is amplified to V.. voltage using
the sense amplifier activated by SAE signal of H. Since
this read operation is destructive, the memory cell must
be rewritten and the CP line is driven to L (Vs
voltage). Then the lines of SAE, BL and/BL, and WL
are driven to L sequentially. ‘

The hysteresis of ferroelectric memory capacitor is
shown in Fig. 4. Pr is a remnant polarization and Ec

WL cp| S4E
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Sense Amp.
Fig.2 2T/2C type memory cell.
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Fig.3 The operation of CPSD read scheme.
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is a coercive field. H,;,/L; are the states at ti; in Fig.
3, le/Lm are at t;o, and H13/L13, H14/L14 are at tig, tis
respectively. Bitline voltage is defined by the shape of
hysteresis loop and bitline parasitic capacitance. The
slopes of straight line in Fig. 4 indicate bitline
capacitance. When CP is driven to H, V. voltage is
applied to Cs+ C, through pass transistor, where Cs is
a ferroelectric memory cell capacitor and C, is a bitline
capacitance, respectively. After CP is driven to H, the
ferroelectric cell capacitor is discharged and the bitline
capacitor is charged. BL voltage is converged to Hi.
when the written logic state is H, and is converged to
L., when the written logic state is L. The large bitline
voltage differences between H;, and L1, is essential for
stable read operation. This read operation is referred
as “cell plate step driven read scheme” (CPSD read
scheme) in this paper.

The 1T/1C type memory cell is shown in Fig. 5.
The difference from 2T /2C type memory cell is that the
reference cell is added to each sense amplifier. In 2T/
2C memory cell, the read operation is done by compar-
ing the charge of two ferroelectric capacitors in a
memory cell. However, in case of the 1T/1C memory
cell, the read operation is done by comparing the

Polarization

Power voltage

H11lPc

Bitline C

pacitance

Electric Field
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-Pr

HData 3 I} ¢4k Bitline Read Out

L Data Eh,—.i }_'\—*‘F“' Voltage Difference
/ Ns \

Bitline Capacitor Meomory Capacitor

Fig. 4 The state change of ferroelectric memory capacitor with
CPSD read scheme.

WL1 CP WLO RWLO CP RWL1
/BL ! 3 !
o)
0“ Cs "'{ Cr H
o,
Ns Nr
Ns eoe Nr 3
Cs 2
|—0 Cr ]—0 2
n
BL \ 4 \
i | |
Lo Ldd RU—|
Memory Cell Reference Cell

Fig.5 1T/1C type memory cell.
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Fig.7 Operation sequence of 1T/1C cell.

charges of memory capacitor with reference capacitor.
The area of reference capacitor is several times larger
than that of memory capacitor, and the reference
capacitor is used in the low side of the hysteresis to
generate a fixed reference level. The reference cell sets
up a proper reference level automatically between level
H and L at any V.. voltage as shown in Fig. 6.

The read sequence is the same as the 2T/2C type
memory cell, except for the reference cell (Fig.7). It
should be noted that the voltage difference between BL
and/BL is the half of the voltage obtained with 2T/2C
type memory cell. It means that the 1T/IC type
memory cell requires more uniform and precise control
of the ferroelectric memory cell capacitors than the 2T/
2C type memory cell.

3. Issues of the Conventional FeRAM Circuit

The conventional circuits mentioned above have large
parasitic capacitance in CP lines and are affected easily
by the state of ferroelectric capacitors. Large parasitic
capacitance of CP causes long operation time and high
power consumption, which is a crucial problem for a
practical use of FeRAM. In addition, when the circuit
is in the low voltage operation, i.e. V. voltage is
lower than the voltage of saturating hysteresis (about 3
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V), the circuit cannot generate large voltage difference
between BL and /BL at t;; in Fig. 3.

In a point of view of reliability, some problems
also exist in the conventional circuit. One of them is
the decrease of remnant polarization charge in non-
selected cell capacitors while other cells are in read/
write operation. In the conventional circuit, memory
cells in the same column all use one CP line. As a
consequence, once one of the cells is selected during
the read/write operation, which means the CP is
driven to H, CP of the non-selected cells in the same
column are also driven to H. In turn, the storage node
(Ns) of the non-selected cell is floating because WL is
kept to L and the pass transistor is cut off (Fig.2). As
the Ns is floating and a parasitic capacitance (C,) of
the pass transistor is connected serially to the memory
capacitor (Cs), the voltage between CP and Vs are
divided by Cs and C, and the voltage of Ns is set to
Veer Cs/ (Cs+ Cy). In other words, the voltage of V.-
Cn/ (Cs+ Cy) is applied to non-selected memory
capacitors at each read/write cycle and causes the
decrease of remnant polarization charge.

The other problem is in the 1T/1C memory cell.
In this configuration of Fig. 5, the reference capacitor
uses only the low side of hysteresis curve and must be
kept to the low side as shown in Fig. 6. If CP is driven
to L while RWLn and/BL is held in H, the polariza-
tion of the reference cell is reversed. The reference cell
in high side of the hysteresis loop cannot generate a
correct reference voltage, and that leads to data failure.
To avoid this reversal of the polarization in the refer-
ence capacitor, RWLn must be driven to L before CP
is driven to L as shown in T, and Ts in Fig. 7.

In spite of this operation sequence, there remains
another defect. The reference level fluctuates depend-
ing upon whether the data of the memory is logic H or
L. In case of the memory state in logic H, the/BL and
Nr voltages are kept to Vs in T4 in Fig. 7. When CP
is driven to L in Ts, Nr kept to Vss in T4 is driven to
a negative voltage state. As a pn junction is formed
between Nr (n*) and the p-type substrate, Nr in Ts is
set to a built-in voltage of the junction. As a result, a
negative built-in voltage remains in Cr after the read
operation [2]. On the other hand, when the read out
signal is logic L, any voltage, such as the built-in
voltage of the pn junction, does not remain in Cr after
the read operation. This fluctuation of the Cr state
causes an uncertainty in the reference level and would
cause a data failure.

In addition, the reference level of the circuit is
easily affected by relaxation, retention, fatigue and
imprint of the ferroelectric capacitors, as it is generated
by the ferroelectric capacitors. These instability factors
of the reference level also cause data failures in the
memory, therefore the optimization of circuit parame-
ters is necessary to achieve high reliability.



ASARI et al: FeRAM CIRCUIT TECHNOLOGY AND CONTACTLESS IC CARD

Word Line Word line
(WL) Bit Line(BL) L Bit Line(BL,
(WL) ™\ Bit Line(BL)

|4}

JE|

|3}

Word Decoder
f
1]
H
: i
I
‘Word Decoder

LT i e

HEHTETH

s
EE A
L

=
— | / ;
%@ |_Sense Amplifier | | Sense Amp.l\ / [Sense Amp ]

1w

1 . ..
CP Control Circuit Cell Plate Line  CP Control Circuit
(CP)
a) Conventional architecture (b) Divided cell plate line
architecture

Fig. 8 Divided cell plate line architecture.

4. New Circuit Technology
4.1 Divided Cell Plate Line Architecture

Different types of architecture for driving cell plate line
(CP) are shown in Fig. 8. One is the conventional
architecture that all cell plate lines in a column are
connected together (Fig.8(a)). In the other type the
cell plate and its control circuit are divided by one per
word line (Fig. 8(b)).
Certain issues of the conventional architecture are

“explained in Sect. 3:

i) long drive time and high power consumption,

ii) remnant polarization decrease in non-selected cell
in read/write operation.

To avoid these problems, we adopted a new architec-
ture in which CP is divided into one per word line as
shown in Fig. 8(b). In this architecture, we can drive
the memory cell separately and reduce the parasitic
capacitance of CP by 77%. A drastic reduction of the
current consumption from 0.52 mA to 0.12 mA is also
achieved at cycle time of 200ns in 3V operation.
Furthermore, we can achieve high reliability to avoid
decreasing the remnant polarization of non-selected
cell capacitors.

4.2 Bitline High Precharged Cell Architecture

The cell plate line architecture as mentioned above is
quite effective for the low power consumption, how-
ever, it needs more improvement in drive time to
activate the CP signal.

Recently, another new scheme, i.e. cell plate non-
driven read scheme, was proposed [3]. It is useful for
high speed operation because CP line voltage is fixed
at an intermediate level of supply voltage, which is
about half of V.. However this scheme has two
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Fig. 11 The comparison of memory access time between con-
ventional read scheme and bitline high precharged read scheme.

disadvantages. Since the cell plate is fixed to a half of
Ve, a sufficient voltage (about twice of a coercive
voltage) cannot be applied to its ferroelectric
capacitors, which hampers the low voltage operation.
Furthermore, it requires a refresh cycle because of
memory data destruction due to the leakage current
from the capacitor storage node (Ns) to the substrate
through a p-n junction.

To overcome these issues, we have developed a
bitline high precharged read scheme as shown in Fig.
9 [4]. In this read scheme, BL are precharged to Ve
before the read operation, and CP is fixed to Vs
voltage before sense amplifier activation. The simu-
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lated waveform of the bitline high precharged read
scheme is shown in Fig. 10. For this read scheme,
stored charge in ferroelectric capacitor is led to BL
automatically as WL is driven to H, and a shorter
access time is achieved because the data can be read
before the activation of CP. After sense amplifier is
activated, CP must be driven to H to rewrite memory
cell capacitor. This read scheme requires no refresh
cycles and achieves short access time in Fig. 11.

4.3 Cell Plate Pulse Driven Read Scheme (CPPD
Read Scheme)

Hysteresis of SrBi,Ta,Os gets saturated at above 3V
and the operation of the memory cell becomes stable.

Ccp

SAE

B AN

t21  t22 123 t24 t25

Fig. 12 The operation of CPPD read scheme.
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Fig. 13 The state change of ferroelectric memory capacitor with
CPPD read scheme.
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Fig. 14 The simulation result.
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However, when V.. voltage is low or C,/Cs ratio is
small, it does not generate a voltage difference between
BL and /BL that is large enough for sense amplifier to
read signals accurately. The capacitor of H state can
not complete a polarization reversal because of low
voltage or small C,/Cs ratio, and the difference
between the charge from H state capacitor and that
from L state capacitor becomes quite small. This
disturbs memory’s accurate operation.

To solve this issue, we proposed cell plate pulse
driven read scheme (CPPD read scheme) to achieve
the stable operation at low voltage as shown in Fig. 12.
In the conventional read scheme (CPSD read scheme),
CP is driven to L after the activation of sense amplifier.
However, in this read scheme, the CP is driven to L
before the activation of sense amplifier. The state
change of ferroelectric memory capacitor in CPPD
read scheme is shown in Fig. 13. Hj, /L, are the states
at ty; in Flg 12, and sz/Lzz, st/L23, Hz4/Lz4 are the
states at tag, tas, tz4 respectively. The opposite side of
hysterisis loop is used by driving CP to L before sense
amplifier is activated. The L state trace is converged to
near 0 V and the H state trace is converged to a certain
positive voltage. This means that there is some
difference voltage even if V. voltage is quite low.
Furthermore since the BL voltage is kept low, WL
need not be boosted and sense amplifier always oper-
ates at its best capability at a low voltage setting.

Figure 14 shows the result of simulation of the
CPPD and the conventional CPSD read scheme. We
used the model described in Ref. [5] in this simulation.
This simulation model utilize the effects of space
charge on the electrical properties of ferroelectric
capacitor. The result of the simulation indicates that
CPPD read scheme shows better characteristics than
CPSD read scheme in the area of low V.. voltage or
small C,/Cs ratio hatched in Fig. 14. With these
backgrounds, we confirm that this read scheme is
suitable for a low voltage operation, such as an embed-
ded memory circuit of contactless IC card.

4.4 Preset Reference Cell Architecture

In the case of 1T/1C type memory cell, it is important
to generate constant reference level. In the circuit
explained in Fig. 5, when the read out signal is logic L,
the voltage of reference capacitor can be 0 V after the
read operation, as explained in Sect. 3. Nevertheless, if
the read out signal is logic H, the voltage of reference
capacitor cannot be 0V and the negative built-in
voltage remains after the read operation. This means
that the reference level varies depending upon whether
read out signal is H or L.

To avoid the variation of the reference level, we
adopted the preset reference cell shown in Fig. 15. In
order to discharge the reference capacitor, an n-channel
transistor is added to the conventional circuit. The
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Fig. 15 Preset reference cell.
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Fig. 16 Operation sequence of preset reference cell.

operation sequence is shown in Fig. 16. To keep all
reference capacitors to the low side such as in Fig. 6,
the RWLn of word line for reference capacitors is
driven to L before CP is driven to L. The reference
capacitor is set to — V. voltage as RWLn and RBP to
L and H, respectively, and reset to 0V when CP is
driven to L. To make reference capacitor set to — Ve,
which is the saturated voltage of hysteresis, is quite
important to keep the hysteresis trace of reference
capacitor constant. This reference cell architecture
enables low voltage operation and high reliability
because a constant reference level is generated.

4.5 Non-relaxation Reference Cell Technology

When ferroelectric capacitor is used as a reference
capacitor, the reference level is changed because the
reference capacitor is also affected by relaxation, reten-
tion, fatigue and imprint. In order to avoid relaxation
and retention, we proposed a non-relaxation reference
cell as shown in Fig. 17 [4]. The hysteresis loop of
reference capacitor is reset to the non-relaxation point
after read/write operation by once being set to Vr
point. This reference cell also enables low voltage
operation and high reliability because it can keep the
constant remnant polarization charge.

4.6 Optimization of Read/Write Operation Time

It is important to switch the polarization of memory
capacitor completely during write operation so as to
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Fig. 17 Hysteresis loop trace of non-relaxation reference cell.

improve the characteristic of retention. Memory data
are difficult to be written on during low voltage opera-
tion or under low temperature because hysteresis loop
does not get saturated at low voltage and coercive
electric field becomes large at low temperature. The
conventional method we has used for simulated does
not include the time response element of polarization
reversal. However, the time response analysis should
not be ignored when the memory operates at a high
speed such as 1 MHz-10 MHz. Short write operation
time prevents memorized state from reversing fully and
keeps it from working properly. On the other hand,
read operation time has the optimized value and read
operation that’s too long or short prevents proper
operation. These phenomenon varies with Ve voltage.
We developed a simulation model [6] by measuring
ferroelectric capacitor, and enabled to optimize the
high speed read/write operations under various condi-
tions. This simulation model includes time response of
polarization reversal which is calculated from polariza-
tion vs. time curve of ferroelectric material and is quite
similar to the actual state. A better circuit design and
a high reliability are realized by this simulation.

5. Application the FeRAM Circuit Technology to
LSI for Contactless IC Card

As described above, FeERAM has advanced features of
high speed, low voltage write and non volatility. To
utilize these features and incorporate the present circuit
technology, we developed an FeRAM embedded LSI
for contactless IC card (Fig. 18). The IC card which
is activated by the radiation of electromagnetic field
enables long operation range and high operation
speed, the characteristics which has not been im-
plemented with the conventional EEPROM technol-
ogy. :

The block diagram of the experimentally fabri-
cated LSI is shown in Fig. 19. The LSI has a 5 kbit
FeRAM, a 4 bit microprocessor, and an analog circuit
for RF (radio frequency) communication. The
specification of this LSI is shown in Table2. The
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Fig. 18 The photograph of LSI for RF IC-card.
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Fig. 19 The block diagram of LSI for RF IC card.

Table 2 The specification of LSI for RF IC card.

Item Specification
IC Process 0.8 . CMOS
MPU 4bit(MN150022)
Memory 5KbitFeRAM
Power Carrier 13.56MHz
Frequency
Data Carrier Frequency 3.39MHz
MPU Clock Frequency 4.52MHz
RW->Card(ASK) 141.25kHz
RW<«Card (BPSK) 141.25kHz
Read Write Range 0~10cm
Sync Code 24bit
CRC CRC-CCITT
Cipher built-in

frequency of power wave is 13.56 MHz and that data
wave is 3.39 MHz. High speed communication (141.25
kHz) and long communication distance (0-10cm) is
achieved owing to the FeRAM. The FeRAM also
realized high data reliability with above technology
under the large noise from the regulator and electro-
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Fig. 20 Access time of 5 K FeRAM.

magnetic wave. Moreover, the FeRAM has an error
correction circuit (ECC) to correct 1 bit error in 8 bit
and has a screening test circuit to eliminate cells whose
initial characteristics are poor. The access time vs. the
Vee voltage of the FeRAM is shown in Fig. 20. This
memory operates even at 1.8 V V. voltage. This LSI
is utilized to the electric money and commutation
ticket.

6. Conclusion

We provided new circuit technology for FeRAM
which is developed to implement high speed operation,
low voltage operation, and low power consumption.
The divided cell plate line architecture, the bitline high
precharged cell architecture, and the cell plate pulse
driven read scheme are demonstrated to ensure high
performance. Furthermore, the reference cell technol-
ogy and the optimization of read/write operation time
are described as the key to obtain high reliability. The
preset reference cell architecture and the non-
relaxation reference cell technology are the innova-
tions to generate constant reference level. The LSI
with an implementation of above circuit technology
for contactless IC card is an important application of
FeRAM. This LSl is utilized to the electric money and
commutation ticket.
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